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Discrete uncertainty principle

Discrete uncertainty principle

We use the discrete case for simplicity of presentation

ZN = Z/NZ = {0, . . . ,N − 1}

`2N = {u : ZN → C}, ‖u‖2`2N =
∑

j
|u(j)|2

FNu(j) =
1√
N

∑
k
e−2πijk/Nu(k)

The Fourier transform FN : `2N → `2N is a unitary operator

Take X = X (N),Y = Y (N) ⊂ ZN . Want a bound for some β > 0

‖1XFN1Y ‖`2N→`2N ≤ CN−β, N →∞ (1)

Here 1X , 1Y : `2N → `2N are multiplication operators
If (1) holds, say that X ,Y satisfy uncertainty principle with exponent β
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Discrete uncertainty principle

Basic properties

‖1XFN1Y ‖`2N→`2N ≤ CN−β, N →∞; β > 0 (2)

Why uncertainty principle?
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Discrete uncertainty principle

Basic properties

‖1XFN1YF−1
N ‖`2N→`2N ≤ CN−β, N →∞; β > 0 (2)

1X localizes to X in position, FN1YF−1
N localizes to Y in frequency

(2) =⇒ these localizations are incompatible
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Discrete uncertainty principle

Basic properties

‖1XFN1Y ‖`2N→`2N ≤ CN−β, N →∞; β > 0 (2)

1X localizes to X in position, FN1YF−1
N localizes to Y in frequency

(2) =⇒ these localizations are incompatible

Volume bound using Hölder’s inequality:

‖1XFN1Y ‖`2N→`2N ≤ ‖1X‖`∞N →`2N‖FN‖`1N→`∞N ‖1Y ‖`2N→`1N

≤
√
|X | · |Y |

N

This norm is < 1 when |X | · |Y | < N. Cannot be improved in general:

N = MK , X = MZ/NZ, Y = KZ/NZ =⇒ ‖1XFN1Y ‖`2N→`2N = 1
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Application: spectral gaps

Application: spectral gaps for hyperbolic surfaces

(M, g) = Γ\H2 convex co-compact hyperbolic surface

F`

`3/2

`1/2

`1/2

`3/2

`2/2

`2/2

q3

q1q2

q2 q1

D1 D2

D3 D4

γ1 γ2

`1 `2

`3

M`

Resonances: poles of the Selberg zeta function (with a few exceptions)

ZM(λ) =
∏
`∈LM

∞∏
k=0

(
1− e−(s+k)`

)
, s =

1
2
− iλ

where LM is the set of lengths of primitive closed geodesics on M
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(M, g) = Γ\H2 convex co-compact hyperbolic surface

F`
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`2/2
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q1q2

q2 q1

D1 D2

D3 D4

γ1 γ2

`1 `2

`3

M`

Resonances: poles of the scattering resolvent

R(λ) =
(
−∆g −

1
4
− λ2

)−1
:

{
L2(M)→ L2(M), Imλ > 0
L2

comp(M)→ L2
loc(M), Imλ ≤ 0

Existence of meromorphic continuation: Patterson ’75,’76, Perry ’87,’89,
Mazzeo–Melrose ’87, Guillopé–Zworski ’95, Guillarmou ’05, Vasy ’13
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Application: spectral gaps

Plots of resonances

Three-funnel surface with `1 = `2 = `3 = 7

Data courtesy of David Borthwick and Tobias Weich
See arXiv:1305.4850 and arXiv:1407.6134 for more
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Application: spectral gaps

Plots of resonances

Three-funnel surface with `1 = 6, `2 = `3 = 7

Data courtesy of David Borthwick and Tobias Weich
See arXiv:1305.4850 and arXiv:1407.6134 for more
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Application: spectral gaps

Plots of resonances

Torus-funnel surface with `1 = `2 = 7, ϕ = π/2, trivial representation

Data courtesy of David Borthwick and Tobias Weich
See arXiv:1305.4850 and arXiv:1407.6134 for more
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Application: spectral gaps

The limit set and δ

M = Γ\H2 hyperbolic surface
ΛΓ ⊂ S1 the limit set
δ := dimH(ΛΓ) ∈ (0, 1)

`1 `2

`3

M`

Trapped geodesics: those with endpoints in ΛΓ
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Application: spectral gaps

Spectral gaps

Essential spectral gap of size β > 0:

only finitely many resonances with Imλ > −β
Application: exponential decay of waves (modulo finite dimensional space)

Patterson–Sullivan theory: the topmost resonance is at λ = i(δ − 1
2),

where δ = dimH ΛΓ ∈ (0, 1) ⇒ gap of size β = max
(
0, 1

2 − δ
)

δ − 1
2

δ − 1
2

δ > 1
2 δ < 1

2
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Application: spectral gaps

Spectral gaps

Essential spectral gap of size β > 0:

only finitely many resonances with Imλ > −β
Application: exponential decay of waves (modulo finite dimensional space)

Patterson–Sullivan theory: the topmost resonance is at λ = i(δ − 1
2),

where δ = dimH ΛΓ ∈ (0, 1) ⇒ gap of size β = max
(
0, 1

2 − δ
)

Improved gap β = 1
2 − δ+ε for δ ≤ 1/2:

Dolgopyat ’98, Naud ’04, Stoyanov ’11,’13, Petkov–Stoyanov ’10

Bourgain–Gamburd–Sarnak ’11, Oh–Winter ’14: gaps for the case of
congruence quotients

However, the size of ε is hard to determine from these arguments
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Application: spectral gaps

Spectral gaps via uncertainty principle

M = Γ\H2, ΛΓ ⊂ S1 limit set, dimH ΛΓ = δ ∈ (0, 1)

Essential spectral gap of size β > 0:
only finitely many resonances with Imλ > −β

Theorem [D–Zahl ’15]

Assume that ΛΓ satisfies hyperbolic uncertainty principle with exponent β.
Then M has an essential spectral gap of size β−.

Proof

Enough to show e−βt decay of waves at frequency ∼ h−1, 0 < h� 1
Microlocal analysis + hyperbolicity of geodesic flow ⇒ description of
waves at times log(1/h) using stable/unstable Lagrangian states
Hyperbolic UP ⇒ a superposition of trapped unstable states has norm
O(hβ) on trapped stable states
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Application: spectral gaps

Spectral gaps via uncertainty principle

M = Γ\H2, ΛΓ ⊂ S1 limit set, dimH ΛΓ = δ ∈ (0, 1)

Essential spectral gap of size β > 0:
only finitely many resonances with Imλ > −β

Theorem [D–Zahl ’15]

Assume that ΛΓ satisfies hyperbolic uncertainty principle with exponent β.
Then M has an essential spectral gap of size β−.

The Patterson–Sullivan gap β = 1
2 − δ corresponds to the volume bound:

|X | ∼ |Y | ∼ Nδ =⇒
√
|X | · |Y |

N
∼ Nδ−1/2

Discrete UP with β for discretizations of ΛΓ

⇓
Hyperbolic UP with β/2
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Proving uncertainty principles

Regularity of limit sets

The sets X ,Y coming from convex co-compact hyperbolic surfaces are
δ-regular with some constant C > 0:

C−1nδ ≤
∣∣X ∩ [j − n, j + n]

∣∣ ≤ Cnδ, j ∈ X , 1 ≤ n ≤ N

Conjecture 1
If X ,Y are δ-regular with constant C and δ < 1, then

‖1XFN1Y ‖`2N→`2N ≤ CN−β, β = β(δ,C ) > 0

Implies that each convex co-compact M has essential spectral gap > 0

Conjecture holds for discrete Cantor sets with N = Mk , k →∞

X = Y =
{∑

0≤`<k
a`M

`
∣∣ a0, . . . , ak−1 ∈ A

}
, A ⊂ {0, . . . ,M − 1}
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Proving uncertainty principles

Uncertainty principle via additive energy

For X ⊂ ZN , its additive energy is (note |X |2 ≤ EA(X ) ≤ |X |3)

EA(X ) =
∣∣{(a, b, c , d) ∈ X 4 | a + b = c + d mod N}

∣∣
‖1XFN1Y ‖`2N→`2N ≤

EA(X )1/8|Y |3/8

N3/8 (3)

In particular, if |X | ∼ |Y | ∼ Nδ and EA(X ) ≤ C |X |3N−βE , then X ,Y
satisfy uncertainty principle with

β =
3
4

(1
2
− δ
)

+
βE
4

Proof of (3): use Schur’s Lemma and a T ∗T argument to get

‖1XFN1Y ‖2`2N→`2N ≤
1√
N

max
j∈Y

∑
k∈Y

∣∣FN(1X )(j − k)
∣∣

The sum in the RHS is bounded using L4 norm of FN(1X )
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Proving uncertainty principles

Estimating additive energy

Theorem [D–Zahl ’15]

If X ⊂ ZN is δ-regular with constant CR and δ ∈ (0, 1), then

EA(X ) ≤ C |X |3N−βE , βE = δ exp
[
− K (1− δ)−28 log14(1 + CR)

]
Here K is a global constant

Proof
X is δ-regular =⇒ X cannot contain long arithmetic progressions
A version of Frĕıman’s Theorem =⇒ X cannot have maximal
additive energy on a large enough intermediate scale
Induction on scale =⇒ a power improvement in EA(X )
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Proving uncertainty principles

Additive portraits

For X ⊂ ZN , take fX : Zn → N0, j 7→
∣∣{(a, b) ∈ X 2 : a− b = j mod N}

∣∣
Sort fX (0), . . . , fX (N − 1) in decreasing order =⇒ additive portrait of X

|X |2 = fX (0) + · · ·+ fX (N − 1), EA(X ) = fX (0)2 + · · ·+ fX (N − 1)2
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Additive portraits

For X ⊂ ZN , take fX : Zn → N0, j 7→
∣∣{(a, b) ∈ X 2 : a− b = j mod N}

∣∣
Sort fX (0), . . . , fX (N − 1) in decreasing order =⇒ additive portrait of X

|X |2 = fX (0) + · · ·+ fX (N − 1), EA(X ) = fX (0)2 + · · ·+ fX (N − 1)2

A subgroup 16Z/256Z
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Proving uncertainty principles

Additive portraits

For X ⊂ ZN , take fX : Zn → N0, j 7→
∣∣{(a, b) ∈ X 2 : a− b = j mod N}

∣∣
Sort fX (0), . . . , fX (N − 1) in decreasing order =⇒ additive portrait of X

|X |2 = fX (0) + · · ·+ fX (N − 1), EA(X ) = fX (0)2 + · · ·+ fX (N − 1)2

28 points chosen at random with N = 216
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Proving uncertainty principles

Additive portraits

For X ⊂ ZN , take fX : Zn → N0, j 7→
∣∣{(a, b) ∈ X 2 : a− b = j mod N}

∣∣
Sort fX (0), . . . , fX (N − 1) in decreasing order =⇒ additive portrait of X

|X |2 = fX (0) + · · ·+ fX (N − 1), EA(X ) = fX (0)2 + · · ·+ fX (N − 1)2

Discretized limit set with δ = 1/2, N = 216 (data by Arjun Khandelwal)
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Proving uncertainty principles

Additive portraits

For X ⊂ ZN , take fX : Zn → N0, j 7→
∣∣{(a, b) ∈ X 2 : a− b = j mod N}

∣∣
Sort fX (0), . . . , fX (N − 1) in decreasing order =⇒ additive portrait of X

|X |2 = fX (0) + · · ·+ fX (N − 1), EA(X ) = fX (0)2 + · · ·+ fX (N − 1)2

Cantor set with M = 4, A = {0, 2}, k = 8, N = 216
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Proving uncertainty principles

Additive portraits

For X ⊂ ZN , take fX : Zn → N0, j 7→
∣∣{(a, b) ∈ X 2 : a− b = j mod N}

∣∣
Sort fX (0), . . . , fX (N − 1) in decreasing order =⇒ additive portrait of X

|X |2 = fX (0) + · · ·+ fX (N − 1), EA(X ) = fX (0)2 + · · ·+ fX (N − 1)2

Numerics for δ = 1/2 indicate: j-th largest value of fX is ∼
√

N
j .

This would give additive energy ∼ N logN

Conjecture 2

Let X be a discretization on scale 1/N of a limit set ΛΓ of a convex
co-compact surface with dimΛΓ = δ ∈ (0, 1). (Note |X | ∼ Nδ.) Then

EA(X ) = O(N3δ−βE+), βE := min(δ, 1− δ).
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Proving uncertainty principles

What does this give for hyperbolic surfaces?

Conjecture 2

Let X be a discretization on scale 1/N of a limit set ΛΓ of a convex
co-compact surface with dimΛΓ = δ ∈ (0, 1). (Note |X | ∼ Nδ.) Then

EA(X ) = O(N3δ−βE+), βE := min(δ, 1− δ)

δ

β

11
2

1
2

Numerics by Borthwick–Weich ’14 + gap under Conjecture 2
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Thank you for your attention!
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